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ABSTRACT

Windowing of design space is considered in order to
reduce the bias errors due to low-order polynomial

response surfaces (RS). Standard design space windowing

(DSW) uses a region of interest by setting a requirement on
response level and checks it by a global RS predictions

over the design space. This approach, however, is
vulnerable since RS modeling errors may lead to the wrong

region to zoom on. The approach is modified by
introducing an eigenvalue error measure based on point-to-

point mean squared error criterion. Two examples are
presented to demonstrate the benefit of the error-based
DSW.

1. INTRODUCTION

The popularity of response surface (RS) techniques in
design optimization studies has brought attention to ways
of increasing the accuracy of RS approximations.

Adequacy and accuracy of RS are mainly affected by the

following three factors:
• Use of finite number of data points due to cost of

data generation
• Noise in the data

• Inadequacy of the fitting model
We are mainly focused in this paper on model

inadequacy or bias error due to use of low-order
polynomials such as quadratic RS.

An obvious way for reducing bias error is to use higher

order polynomials or more complex functions in RS.
Cubic or even higher order polynomials were applied, for

instance, by Venter et al. [1] and by Papila (N) et al. [2].
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Papila and Haftka [3-4] also achieved substantial
improvement in accuracy by using cubic polynomials in
RS approximation for HSCT wing bending material

weight.
A high-order fitting model, however, requires a large

number of data points, which is usually prohibitive in high

dimensional problems.
Design of experiments (DOE) offers minimum-bias

criterion for reducing modeling (bias) error when low-
order models are used. Venter and Haftka [5] developed

an algorithm implementing minimum-bias based criterion,

necessary for an irregularly shaped design space where no
closed form solution exist for minimum-bias design.

Decreasing bias error is also possible by reducing the
size of the fitting region by the use of reasonable-design-

space (RDS) approach. The approach starts by identifying
constraints specific to the problem of interest provided that

they are easy and inexpensive to evaluate. These
constraints are then used to eliminate unreasonable designs

from the original design space. For instance, simple

geometric constraints where applicable may prevent
combinations of design variables resulting in unreasonable

geometry configurations [4, 6-8]. Finally, tools of DOE
such as D-optimality select data points within the region of
interest where response is evaluated.

It is also possible to identify region or regions of

interest by windowing the design space simply based on

the observed or predicted response levels over the design
space [2]. The windowing approach shares the sprit of

RDS approach in that it reduces bias errors by reducing the
size of the design domain. However, windowing needs

data generation and a global RS beforehand unlike
traditional RDS approach.

In this paper, we aim to focus on improving the RS
accuracy particularly in the regions critical to design
optimization. We limit ourselves to quadratic RS

approximation and concentrate on effective use of design
space windowing (DSW) approach relying on a global RS.

Standard DSW uses a requirement set on the response
level and checks it by using a global RS predictions over
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the whole design space. This approach, however, is
vulnerable since poor accuracy in the global RS may lead

us to zoom on the wrong region.
At this point, we modify the approach and call it as

error-based DSW by introducing a bias error measure.
The error measure is based on an eigenvalue problem

obtained by point-wise mean squared error criterion.

The eigenvalue problem was derived by Papila and Haflka

[9] and used as a tool to map qualitatively the RS bias error
by the associated eigenvalues. In the proposed approach,
regions with high eigenvalues corresponding to potential

large bias error are excluded from consideration.
The following section presents more detailed

description of the mean squared error criterion and use of
eigenvalues in the DSW approach. Section 3 describes
example problems used to demonstrate the approach.

Section 4 presents the results and discussion followed by
concluding remarks in Section 5. The derivation of

eigenvalue problem along with the background for RS
methodology can be found in the Appendix.

2. APPROACH

2.1 Mean Squared Error Criterion-Eigenvalues

An approach for estimating RS approximation bias
errors due to fitting model inadequacy is presented in Ref.

[9]. The mean squared error predictor (MSEP) for an
inadequate model is studied point-to-point yielding an

eigenvalue problem where the maximum eigenvalue at
each point provides a relative estimate of maximum bias
error. With the calculation of the maximum eigenvalues

over the design space, regions of possible high bias error
are identified. The derivation presented in Ref. [9] can

also be found in this paper as an Appendix. As can be seen
from the derivation the eigenvalue error measure strongly

depends on the DOE used, but not on the response data.

Papila and Haftka [9] used face-centered central
composite design (FCCD) and demonstrated the use of
eigenvalue estimate of bias error for problems where the
true function is a cubic while the fitting model is quadratic.

In particular, positive correlation between the square-root

of maximum eigenvalues _ and the absolute residuals

was found for the examples of 2D polynomials that were
studied.

We also use FCCD as our original DOE, quadratic RS

as our fitting model and calculate the eigenvalues as if the
true function is a cubic. Figure 1 presents the FCCD points

and relevant _ field.

2.2 Design Space Windowing Approach

We adopted two types of DSW approaches based on
different reasonability conditions while windowing for the

design region or regions of interest. For simplicity, we
consider problems where we are interested in the high

response regions.

The standard DSW uses Eq. (l) as the reasonability
condition.

._RSI >- Yinterest (1)

where )3RsI is the prediction by the global RS (RSI) and

Yinterest is the response bound to define the region of

interest.
Error-based DSW modifies the standard DSW by

adding another condition based on the eigenvalues [9] that
characterize the modeling error. In order to set a

precaution for the possible misleading information due to
inaccuracy of the global RS (RSI), our reasonability
conditions in error-based DSW can be written as follows.

}RSI _ Yint ere-st

and (2)

< mean(_'-_)

where mean(_f_, c ) is the mean over the design space.

Design points with eigenvalues less than their mean over
the design space are more likely to be accurately predicted

by the global RS (RS 1).
Figure 2 presents the generalized flowcharts for the

standard and error-based DSW approaches. The following

descriptions give the details of our implementation in the
flowcharts.

Standard DSW Approach (Figure 2a):

Step 1: We start with a standard DOE, face-centered
central composite design (FCCD) for Data set l and

construct a global RS approximation (RS 1).
Step 2: We use the global RS (RS1) to predict the

response values on design points of a fine grid netting the
whole design space.

Step 3: We identify design region or regions of interest
based on the predictions in Step 2. We build a pool of

supposedly reasonable designs by simply disregarding the
designs violating the condition in Eq. (l). This is done for
each identified region in case of multiple disjoint regions
of interest.

Step 4: Among the designs located in the pool of Step
3, the number of data points is reduced to a desirable

amount by using D-optimality. We include design points
of Data set 1 where data itself is in the region of interest

(Y_Yinterest)" This reduces the number of additional

evaluations for creating Data set 2. We then construct new

RS (RS2) approximation to be used over the associated

region only. (In case of multiple regions separate RS2 s
are constructed)

Error-based DSW Approach (Figure 2b):

Step 1: Same as Step 1 of standard approach
Step 2: We use the global RS (RSI) to predict the

response values and calculate the eigenvalues on design

points of a fine grid netting the whole design space.

2
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Step 3: We identify design region or regions of interest

combining eigenvalue information ()xD-_-_G) with the

standard DSW approach by Eq. (2).

Step 4: Same as Step 4 of standard approach except
denoting RS in refined regions as RS3.

3. TEST PROBLEMS

We investigate two different test problems to help

assess the performance of the strategies explained above:
(1) Two dimensional preliminary supersonic turbine

design, and (2) A quartic polynomial in two dimensions.
The main reason for choosing 2D problems is that we want

to visualize easily the response surface, prediction error
and eigenvalue field distributions.

3.1 Preliminary. Supersonic Turbine Design in Two-
Dimension

In our previous efforts [2, 10-14], we have studied the
preliminary and detailed design optimization of supersonic
turbines for reusable launch vehicle (RLV). A two-variable
version of the two-stage turbine design problem is

considered in this study. The design variables are the

mean diameter, D, and RPM (5.081 <_D(in) < 15.243 and

21,977 _<RPM _<40,814 ). They are normalized as coded

variables xl and x2 in (-1,1), respectively [15]. The design
domain of the coded variables is a square as shown in

Figure 1.
The numerical simulations are based on the

aerodynamic design software called Meanline Flow Path
Generator [I0, 16] that allows rapid analyses of turbine

flow fields. Using the overall turbine and stage input, the
Meanline code first generates a candidate turbine flow path

and displays a plot of the elevation view. The code then
runs a 1-D quick aerodynamic analysis, calculating gas

conditions, velocity triangles, and required number of
airfoils, predicted efficiency and power output. In
turbomachinery design problems, high efficiency and low

weight systems are sought. For this design problem, the
compromise between these two criteria can be quantified

by a single response that is payload of the RLV.
Therefore, the output or response of interest from the
Meanline code is the change in payload compared to a

fixed baseline design (i.e. dpay). We are mostly interested

in positive dpay designs (i.e., dpay>O).

3.2 Quartic Polynomial in Two-Dimension

We wanted to mimic the efficiency data of supersonic

turbine blade shape optimization problem [10] in terms of

the range of response values as varying between 0 and 1.
Since we are mainly interested in high efficiency regions in
turbomachinery designs, we will consider y>0.7 as the

region of interest for this problem.

A quartic function in 2-D is devised with variables
ranging between -1 and +1 (as coded variables). The

quartic polynomial ranges between 0 and 1 is given in Eq.
3

y = 0.742 +0.000486x_ +0.000486xtx 2

-0.242704x_ +0.012646x_ +0.000486x_x 2 (3)

+0.000486xlx _ +0.486381x_x 2

where xland x2rangein (-1,+l)asshownin Figure 1.

4. RESULTS AND DISCUSSION

We assess the accuracy of RS using mainly root-mean-

squared (rms) error calculations.

,/_(Y, --Yi )2

• rms-error Predictor: V "N

[M-N 2

• Testing tins-error: V M--- N

where N, rib, M number of data set points, number of
coefficients in RS and number of design points in the

design space grid, respectively.

I_,(y,-_i) 2

• Testing rms-error in y > Yint crest : i where
K

K is the number of the testing data in y > Yinterest region

excluding the data points of the associated RS.
Face-centered central composite design (FCCD) as

shown in Figure 1a is used for fitting a quadratic global RS

(RS1). We use 21 by 21 grid over the design space for the
evaluation and assessment of the methods are used.

Therefore, N = 9, nb= 6 and M=441. K is problem

dependent as reported on the tables.

The eigenvalue distribution ( 2xf_-G) is a function of

DOE, the fitting model and assumed true model [9]. We
use FCCD as our DOE, quadratic RS as our fitting model
and calculate the eigenvalues as if the true function is a

cubic. Therefore distribution of _ is identical for both

problems as shown in Figure lb.

(i) Results for Turbine Design

The Meanline results (exact function for turbine design

problem) are shown as a contour plot in Figure 3a. Three

quadratic RS models were studied. The details of these RS
models are given below.

• RS 1: Quadratic RS based on 9 design selected by
standard FCCD (Figure la). Its prediction error

contours are given in Figure 3b.

• RS 2: Quadratic RS based on 9 reasonable designs

using standard DSW condition. Four of the points

are original FCCD points, which satisfy Apay>O. The
other five designs are selected from the designs of

3
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positive RS 1 predictions of the dpay calculated in 21

by 21 grid over the design space. Design points are
shown in Figure 4a.

• RS 3: Quadratic RS based on 9 reasonable designs

using error-based DSW conditions. Four of them

are FCCD points, which satisfy Apay>O. The other

five designs are selected from the designs where RS 1

predicts positive Apay and eigenvalue condition

satisfied. Design points are shown in Figure 4b.Table
1 summarizes the statistics of the three RS of the

turbine problem. It appears that rms-error predictor of

RS1 is conservative as the testing rms-error is less
than the half of the predictor. Testing rms-error in

region of interest is 63.5, slightly higher than overall

testing rms-error. Both approximations of windowing
approaches, RS2 and RS3, resulted in smaller testing
rms-error in region of interest than RS 1 as expected.
There is factor of about 2.8 and 4.2 in the magnitudes

for RS2 and RS3, respectively, compared to RS1. This
indicates that error-based DSW approach improved on
the standard one. The substantial increase in the

overall testing rms-error and max. error reflects the

fact DSW approach approximations RS2 and RS3 are
not accurate outside of the region of interest. This can

also be observed on the RS2 and RS3 prediction error

contours, Figure 5a and Figure 5b, respectively.
Comparison of error contours given in Figure 3b and

Figure 5 demonstrate the benefit from the windowing
approaches where we are most interested. In spite of
the fact that maximum error in region of interest by

RS3 is higher than RS2 (Table 1), more uniform low-
error distribution in Figure 5b compared to Figure 5a

and reduction in testing rms-error in the same region
shows us that we benefit from eigenvalue information

during windowing.
In order to check if the eigenvalues (bias error measure)

helped us to select design points with more accurate RS 1
predictions, we compare error at selected points in Table 2

and Table 3. The tables report the error measure _ and

RS1 prediction errors at the RS2 and RS3 design points,

respectively. Excluding four common design points
coming from the original FCCD, average error (average
error of the boldface rows) decreases from 66.4 in Table 2
to 45.7 in Table 3. This confirms the usefulness of the

eigenvalues for this example.

(ii) Results for Quartic Polynomial

Contour plot for quartic example response given in

Figure 6a shows that we can consider two separate regions
of interest: upper-right and lower-left quadrants of the

square design domain. This observation and the logic
behind the windowing procedure lead us to evaluate each

region separately. The regions, on the other hand, are not
completely remote and disjoint. Therefore, we also want
to see the effect of employing the DSW approaches on the

connected regions as a single region of interest around one

diagonal of the domain. We first present the single
continuous region consideration; windowing as single

region. Then present results of windowing as multiple

regions.
(a) Windowing as single region

Four quadratic RS models were studied for the overall

design domain. The details of these RS models are given
below.

• RS 1: Quadratic RS based on 9 designs selected by

standard FCCD (Figure 1). Its prediction error

contours are given in Figure 6b

• RS 2: Quadratic RS based on 9 reasonable designs
using standard DSW condition. Four of the data

points are FCCD points, which satisfy y>0.7. The
other five designs are selected from the designs of

positive RS 1 predictions of the y calculated in 21 by
21 grid over the design space. Design points and error
contours are shown in Figure 7a and Figure 8a,

respectively.

• RS 3: Quadratic RS based on 9 reasonable designs

using error-based DSW conditions. Four of the data
points are FCCD points, which satisfy y>0.7. The

other five designs are selected from the designs where
RS 1 predicts y higher than 0.7 and eigenvalue
condition satisfied. Design points and error contours

are shown in Figure 7b and Figure 8b, respesctively.

• RS 4: Quadratic RS based on RS 1 and RS 3 design

points (13 designs in total). Design points are shown

in Figure 9a.
Table 4 summarizes the statistics of the four RS.

Unlike turbine problem, rms-error predictor of RS I (equal

to zero) suggesting perfect fit gives a sense of security that
is proved to be wrong by the nonzero testing rms-error.

Testing rms-error in region of interest is even higher and
equal to 0.051. Both approximations of DSW approaches,
RS2 and RS3, resulted in higher testing rms-error in region
of interest than RS1. They are 0.073 and 0.063,

respectively. This indicates that error-based DSW

approach improved on the standard one for the single
windowing, but neither DSW helped to increase accuracy
compared to RS 1 with single windowing. Figure 8a and b

also compares visually the two DSW approaches in terms
of error distribution. It shows that error-based DSW

resulted smaller errors at remote locations of the quadrants

forming the region of interest.

Table 5 and Table 6 show error measure _ and

RS1 prediction errors at the RS2 and RS3 design points,
respectively. Excluding five common design points

coming from the original FCCD average error (average
error of the boldface rows) decreases from 0.0916 in Table
2 to 0.0868 in Table 3.

The best performance among the four RS was obtained

by RS4 (Figure 9). Although its rms-error predictor is the
largest we obtained smallest overall testing tins-error,

4
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testing rms-error and maximum error in the region of
interest. In other words, adding new data points selected

by DSW to the original FCCD improved the accuracy.

(b) Windowing as multiple regions
We report results only on the upper-right quadrant

since the results of lower-left quadrant are mirror image of

the upper right. For the statistics and design points we
consider 11 by 11 grid points in the quadrant. Two RS
were constructed as described below

• RS 5: Quadratic RS based on 9 reasonable designs

using standard DSW condition. Three of them are
FCCD points, which satisfy y>0.7. The rest is

selected from the designs of RS 1 predictions
exceeding 0.7. Design points for RS 5 are shown

Figure 10a.

• RS 6: Quadratic RS based on 9 reasonable designs
using error-based DSW condition. Three of them

are FCCD points, which satisfy y>0.7. The rest of is
selected from the designs where RS 1 predicts y higher

than 0.7 and eigenvalue condition satisfied. Design
points for RS 5 are shown Figure 10b.

Table 7 summarizes the statistics of the two RSs.

Overall testing rms-error and testing rms-error in region of

interest is lower by standard DSW than error-based DSW
(overall: 0.042 and 0.046, respectively, and in the region of
interest: 0.026 and 0.030, respectively). In other words,

standard DSW did a better job compared to error-based

approach in this example. One possible reason is that
introducing the error-based condition may increase

irregularity of the domain of interest. We also calculated
the RS 1 testing rms-error in region of interest over this

particular quadrant as 0.061 that shows both DSW
approaches helped us to lower by half. Figure 11 presents
the error contour for RS5 and RS6. The location of high

errors seemed to be shifted by the error-based DSW.
Table 8 and Table 9 present eigenvalue based error

measure _ and RSI prediction errors at the RS5 and

RS6 design points, respectively. Although we did not see
benefit from the error-based DSW in terms of statistics,

these tables show that eigenvalues condition in fact

selected points with lower errors. Excluding five common
design points average error (average error of the boldface

rows) decreases from 0.0943 to to 0.0658.

5. CONCLUDING REMARKS

In this paper we focused on the model inadequacy or
bias error due to use of low-order polynomials such as

quadratic RS and increased accuracy by design space
windowing (DSW'). We set a requirement on the response
based on a global RS and zoom with a local RS on that

region. Since the modeling errors may lead us to the
wrong region to zoom on, we integrated an eigenvalue

error measure into the procedure and called it error-based
DSW. Two examples were studied to demonstrate the
benefit from error-based DSW:

• In two-dimensional two-stage turbine problem one

region of interest was identified. Both DSW
approaches improved on the global RS accuracy.
Statistics showed that accuracy obtained after error-
based DSW increased in the region of interest

compared to standard DSW
• In quartic polynomial example two regions were

identified. In each region DSW approaches offered
substantial improvement in accuracy compared to

global RS. The error-based DSW, however, did not
bring improvement over the standard approach

possibly due to increased irregularity of the region of
interest caused by the eigenvalue condition.

• For both examples, the average errors at the data

points are lower after the selection by error-based
DSW. This is an indication that modified approach

employing eigenvalues disregarded design points
where reasonability based on RS 1 prediction may be

misleading.
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Table 1: Statistics of the

RSquare Adj
rms-error Predictor

Mean

Observations in Apay >0 / Observations, N

Testing rms-error

#of the testing data, (M-N)

Testing tins-error in Apay >0

#of the testing data in Apay >0, K

Mean of the testing data in Apay >0

Max. Error in Apay >0
Max. Error

lobal fits for turbine design problem

RS 1

(FCCD)
0.984

151.947

-432.831

4/9

60.583

432

RS 2

(Standard DSW)

160.897

0.998

19.053

513.476

9/9

171.830

432

RS 3

(Error-based DSW)

885.188

0.998

22.103

502.470

9/9

133.616

432

63.546 22.645 15.106

193 188 188

505.870 563.886 554.938

160.897 45.356 96.660

692.394

6



AIAA 2002-0539

Table 2:RS1 error at RS 2 data points for turbine design problem. Bold face rows are design points selected by

Standard DSW. Average error of the boldface rows is 66.4

D RPM

-0.5 1

0

0

0.3

0.6

0

-0.5

-0.6

0.2

Apay

212.66

15.75

806.18

983.04

18.71

130.77

630.5

749.29

1074.38

 rror
62.51

4.58

677.3I

928.90

16.22

40.51

565.97

714.34

1173.87

0.715

0.497

0.832

0.792

0.654

0.662

0.832

0.815

0.762

150.15

11.17

128.87

54.14

2.49

90.26

64.53

34.95

99.49

Table 3:RS1 error at RS 3 data points for turbine design problem. Bold face rows are design points selected by

error-based DSW. Average error of the boldface rows decreases to 45.7

D RPM Apay

108.41

 rror
-0.3 0.5 33.52 0.634 74.89

0 0 15.75 4.58 0.497 11.17

0 1 806.18 677.31 0.832 128.87

0.3 -0.3 4.6 14.34 0.568 9.74

0.5 0.4 728.89 703.76 0.645 25.13

0.7 1 1068.91 1127.53 0.613 58.62

0.9 -0.6 84.61 24.46 0.599 60.15

l 0 630.5 565.97 0.832 64.53

1074.38 1173.87 0.762 99.49

Table 4: Statistics of the RS fits for t

RS 1 R'S2

(FCCD)

_RSquare Adj

_ms-error Predictor

Mean

9bservations in y >0.7 / Observations, N

Festing rms-error

_of the testing data, (M-N)

Festing rms-error in y >0.7

_ofthe testing data in y >0.7, K

Mean of the testing data in y >0.7

Max Error in y>0.7

Max. Error

,nomial

1.000 0.990

0.000

0.5800 75164

RS 3

(Standard (Error-based

DSW) DSW) .

0.847

RS 4

(RS 1 + RS 3
design points)

0.880

0.015 0.056 0.115

0.829 0.653

7/9 7/9 7/9

0.260 0.259 0.075

432 432 428

5/9

0.08

432

0.051

200

0.789

0.161

0.192

0.073 0.063 0.039

198 198 198

0.794 0.765 0.776

0.149 0.159 0.109

0.778 0.750 0.217
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Table 5: RS 1 error at RS 2 design points for quartic polynomial. Bold face rows are design points selected by

Standard DSW. Average error of the boldface rows is 0.0916

XI X2 Y

0.9728

RS 1 Error

XI

-1

-1 -0.7 0.9509 0.613 0.0000

-1 0.7292 0.831 0.0003

-0.7 0.8307 0.613 0.1692

0 0.7417 0.497 0.0000

0.7 0.8495 0.613 0.1781

0.0003

x2 y

-1 0.9728

0.9509

0 0.7296

-1 0.6615

0 0.7417

1 0.6714

0 0.7549

0.7 0.9773

l 1.0000

YRSl _- Error

0.9731 0.762 0.0003

0.7552

0.9773

0.9997

0.831

0.613

0.762

Table 7:Statistics ofthe RS fits forqua_ic polynomial
0.061

RSquare Adj

tins-error Predictor

Mean

Observations in y >0.7 / Observations, N

resting rms-error

#of the testing data, (M-N)

resting rms-error in y >0.7

#of the testing data in y >0.7, K

Mean of the testing data in y >0.7

Max Error in y>0.7

0.026

74

0.790

0.060

For the comparison, test points are the designs of the relevant quadrant.

Table 6: RS 1 error at RS 3 design points for quartic polynomial.

error-based DSW. Average error of the boldface rows is

. Bold face rows are design points selected by
0.0868

0.0000

0.0003

in upper-right quadrant where testing rms-error in y >0.7 is

b), RS 1
RS 5

(Standard DSW)

0.905

0.043

0.755

7/9

0.042

112

RS 6

(Error-based DSW)

0.840

0.049

0.778

7/9

0.046

112

0.030

74

0.796

0.054

-1 -1 0.9731 0.762 0.0003

-1 0 0.7296 0.7292 0.831 0.0003

-0.5 -1 0.5582 0.7358 0.715 0.1775

0 0 0.7417 0.7417 0.497 0.0000

0.1 0 0.7417 0.7430 0.499 0.0013

0.5 1 0.5621 0.7494 0.715 0.1873

1 -0.1 0.7037 0.7040 0.827 0.0003

1 0 0.7549 0.7552 0.831 0.0003

1 1 1.0000 0.9997 0.762 0.0003



AIAA 2002-0539

Table 8: RS 1 error at RS 5 design points for quartic polynomial in upper-right quadrant. Bold face rows selected

b_, Standard DSW. Avera[[e error of the boldface rows is 0.0943

Xl X2 Y

0.7417

0.3

0.5 0 0.7434 0.6175

0.7148

RSI Error

0 0 0.4969 0.742 0.0000

0 0.4 0.7029 0.5708 0.703 0.0001

0.8 0.5975 0.7042 0.707 0.1099

0.748 0.0049

0.5 1 0.5621 0.749 0.1873

0.6 0.4 0.7481 0.6615 0.828 0.0798

1 0 0.7549 0.8315 0.755 0.0003

1 0.5 0.9380 0.7148 0.938 0.0001

1 1 1.0000 0.7617 1.000 0.0003

Table 9: RS I error at RS

by
6 design points for quartic polynomial in upper-right quadrant. Bold face rows selected

error-based DSW. Average error of the boldface rows is 0.0658

XI X2 Y

0.7417

RSI Error

0 0 0.4969 0.742 0.0000

0 0.4 0.7029 0.5708 0.703 0.0001

0.1 0.5 0.6814 0.6193 0.707 0.0255

0.5 0 0.7434 0.6175 0.748 0.0049

0.5 0.3 0.7400 0.6341 0.800 0.0597

0.7 1 0.6714 0.6128 0.849 0.1781

1 0 0.7549 0.8315 0.755 0.0003

! 0.7 0.9773 0.6128 0.977 0.0000

1 1 1.0000 0.7617 1.000 0.0003

£

-1-1 -0.5 0 0,5

_cu_

I 0829
0797

0365
137_

0701
0 669

0837
0605

0573

0541
0509

0477
04'r_

0.5

x_

(a) FCCD (b) _-_-c con tours

Figure 1: Design space for two-variable examples: FCCD design points and _f_-'c con tours (Mean _-_--c =0.0646)
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Global RS

Global RS Model
I Model I t. I ...... ,

...........[-1-,..................r ..............715:---:1-
,, ,.z__________.__/I , Prediction / Eigenvaluesat _/ Grid points /

i ' Prediction IIy Grid points i byRS at II t_l manypoints I1_ of design /
[ by RS at I It of design [ i l manypomts I L.] "_ [ ( _G ) I U\ space l
II manypoints I I _x space ] ]l (y ) __1 I I _ \l
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---i.==............................................
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I I

I I

',_._ : _ Exo..,i,dei ) ! _.._._::t::: a_G ]/////_'-_ ]::'xe' n d en )
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Ll-----M-°-d-e-I......................... fRefined RS I_L______t_Y_........................

(a) Standard DSW approach (b) Error-based DSW approach

Figure 2: Standard and error-based design space windowing approach for searching regions of high response designs
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APPENDIX

Response Surface Methodology

Response surface approximations fit numerical or physical experimental data with an analytical model that is

usually a low-order polynomial. The response at design point x" is denoted as y [ = y(x)] and given by Eq. (4)

y(x) = r/(x)+ e (4)
where r/(x) is the true mean response at design point x and e represents other random sources of variation such as

measurement error and noise not accounted for in q. In other words if the experimenter has the luxury of

performing the experiment many times at x, the average of the observations will tend to r/ despite the random errors

e. Random errors e are assumed to be uncorrelated and normally distributed random variable with zero mean and

standard deviation _r, which is the same at all points. In RS technique the true mean response is assumed to be

given in terms of coefficients fli s and shape functions fi (x) (i= 1, rib) as in Eq. (5).

glb

r/(x) = ]F_.flifi (x) = fT[5 (5)
i=1

where f'r ={ft(x ) f2(x) ..- f.b(x )} and I_={/3, f12 "'" fln_}T and T denotes transpose for the matrix

representation. The n b shape functions jr/ are usually monomials and fli are unknown coefficients, representing

the best approximation to y when noise is absent. With noise the fitted approximation is given as

nb

)3(x) = Ebifi(x) = frb (6)
i=1

where b_s (vector b) are estimates of the fli (vector [_) obtained from a least squares fit. The difference (residual)

between the datay for a point x and the estimate defined in Eq. (6) is given as

e = y - ._(x) (7)

The residual for the N data points can now be written in matrix form,

e =y-Xlb I (8)

where X 1 is the matrix whose terms in the row associated with the point x are formed by monomials fi (x) *. For

instance, for a quadratic model in two-variables with N data points X ! is given as

x,, x_, x 2, x,,x21 x_,

Xl2 X22 X?2 X12X22 X22

• : : ; :

Xl=

xl I x2J x2j x'jx2J x2.i (9)
- : - :

x, N x,Nx2 
in Eq. (8) is solved for minimum residual vector in a least-square sense, and can be

XIN

The coefficient vector bj

expressed as

b, = (xTxt)'I X_y (10)

When the model is exact (no bias error), unbiased estimates of the noise o" in the data is given as

s .l yTy - b_Xlry (11)

With finite number of data, errors in the data cause errors in the coefficients, and that in turn causes a prediction

error of the RS approximation that depends on location. Because Eq. (5) is only an approximation to the true mean

" Bold face is used for vector and matrix representations, e.g. x = Ix I x2 ]3" for two-variable case where superscript

T stands for transpose operation

" The subscript "1" used forpl,b _and X_ refers to the set of monomials included in the model. Later, a subscript
"2" will be used for the set of monomials needed to complete the model in order to obtain the true response.
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response function, s will contain not only noise error, but also error due to the approximation. Besides s, the

quality of the approximation is often measured by the adjusted coefficient of multiple determination R 2 .

s2 (12)
R_, = 1 N

___(y j _ y)2/(N - 1)
j=l

where fi is the average value of the response data.

D-Optimal Design

A D-optimal design minimizes the generalized variance of the estimates, which is equivalent to maximizing the

determinant of the moment matrix, M [ 15].

-IxTx (13)
tMl--N°b

The D-optimal design approach makes use of the knowledge of the properties of polynomial model in selecting the

design points. This criterion tends to emphasize the terms of the polynomial model with the highest sensitivity [17].

Mean Squared Error Criterion [9]

As a measure of the error in the approximation, the mean squared error of prediction MSEP defined as in Eq.

(14) is used

MSEP(x) = E_(x) - r/(x)] 2 (14)

where q(x) and _(x) are the tree mean response and the prediction by the fitted model, respectively at x. MSEP is

by definition an expected value that would be reached if the number of data used in approximation were unlimited.

Equation (14) may be rewritten as

MSEP = E_(x) - E33(x)] 2 + [E)3(x) - q(x)] 2 (1 5)

The first term in Eq. (15) represents the variance error due to random noise and the second term represents bias

error due to inadequate modeling. This error expression is usually averaged via integration over the design space
and the integral is minimized by choosing the experimental designs (DOE) that control the effect of one or both
types of error-noise and bias-J18 and 5]. It is reported in [18], "the averaging MSEP over the design region in fact

mask a poor performance by the RS approximation at certain locations of the design region "'. Papila and Haftka [9]

instead attempted point-wise characterization of the error and to determine the design regions where RS prediction
may suffer due to either or both types of error. Therefore Eq. (I 5) is used to investigate the variation of MSEP from

point-to-point.
The expectation of the predicted response at a given design point x can be expressed as

Ej3(x) = fTE(bl) (16)

where fl "*is the vector of shape functions f/ [see Eq. (5)] calculated at point x.

The mean and the variation for the coefficient estimates are given as

E(b,) = (XTX,)'XTE(y) (17)

Var(hl ) = o-2 (xTx1) -1 (18)

where cr is the standard deviation of the noise error. The first part of the mean squared error in Eq. (15) is equal to

the prediction variance at x.

E[_(I)- E)3(x)] z = Var[y(x)]

= frVar(bl )fl (19)

_- -'f?(x,%)-'f,
The second part of Eq. (15) is the squared error due to the inadequacy of the model used

•1, Subscripts 1 and 2 assign matrices and vectors for the fitting model and the missing terms, respectively.
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[E_(x) - r/(x)] 2 = (Bias_(x)_ 2 (20)

Therefore mean squared error of prediction in Eq. (15) can be rewritten as

MSEP = Var[_(x)] + (Bias_(x)]) 2 (21)

The form of the prediction variance, Var[_(x)], in Eq (19) does not change even in the presence of inadequate

modeling, since variance is only caused by random noise. However, when bias error is present, the residual error

mean square s 2 is not an unbiased estimate of 0-2. Using Eqs. (10) and (11) we get

S2 = YT( I N -- P)Y (22)

N-n b

where P= X| (xITx1)-Ix1T (23)

The accuracy of this estimate depends on factors such as the available data or number of points and also the

adequacy of the fitting model that determines whether the estimate is unbiased or biased.

The true mean response at x can be written as

r](X) = f7111 + f2Tp2 (24)

where f2 are terms missing from the assumed model. Since one usually does not know the true response, it is often

assumed to be a higher order polynomial when monomials are used as shape functions. For instance, for a quadratic

fitting model in two-variables when true function is cubic

111T----[_11 _12 _13 ill, /_15 /_16] (25)

The mean of the true response is given as

E(y) = Xt11 t +X2112 (26)

where X 2 is similar to X l , but due to the terms (shape functions) present in the true response that are not included

in the fitting model. After substitution of Eq. (26), Eq. (17) becomes

E(b_) = 111+A112 (27)

where A = (XlXX_)-_X/X2 is called the alias matrix. Substitution of Eq. (27) into Eq. (16) yields

E)_(x) = f? (1_1+ A112) (28)

(Bias_'(x)])2 ={fX0_t +A112)-f|x11''f2r[I2]_ (29)

= [IT[ATf, _ f2][fTA _ f2T 1112

The MSEP at a given point can now be estimated as by using s 2 instead of 0-2

MSEP(x) = s2f? (X ITx 1)-1 fl + 111M112 (30)

where M = [A Tf_ _ f2 ] [fT A - f_ I (31)

Note that MSEP is an expectation by definition [Eq. (14)], and Eq. (30) is its estimate by the data available and

associated s 2 . Using E(y) from Eq. (26), the expected value of biased error mean square s 2 given by Seber [19]

T T
E(s 2) = 0-2 + 112X2 (IN -- P)X2112 (32)

N-p I

since (I N -P) is an idempotent matrix, that is a matrix whose square is equal to itself. It is also positive semi-

definite matrix, so E(s 2) > 0-2 provided that (I N -P)Xzl32 _ 0. Equation (32) means that when bias errors are

present, s 2 is a biased estimate of o -2 .

If this expected value, E(s2), is substituted in prediction variance contribution in Eq. (30) expected value for the

estimate MSEP can be expressed as
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TKT T -i 2 P2 P2 TE[MSEP(x)]=f! (XIXi)f,[O" +--l+[_zM[32

L N-PlJ

= f, +P GP2

where K = xT(xz -- XIA)

G = fT(xTxl)-lfl K + M
N-pl

(33)

(34)

(35)

The aim of the method is to identify points where the bias error is large. It is assumed that the terms missing

from the fitting model are known, but there is not enough data to calculate the corresponding coefficients pz. If one

can estimate the size of [$z, it is possible to formulate a constrained maximization problem for the largest magnitude

of the mean squared error predictor that may be experienced at any given design point for the worst possible 132 of

that magnitude.

max E[ MSEP(x)]
P2 (36)

such,ha,IlP ll2--c
The Lagrangian for this optimization problem can be written as

L(ll 2 , 2) = E[MSEP(x)] + 2(ll2Tliz - c) (37)

Differentiating the Lagrangian with respect to _2

Vl a2fT (xTx1)-_ ft] + v(pTG[_2) + 2V([52TP2 - c) = 0 (38)

•.. ------_ - . Equation (38) yields the following eigenvalue problem at a design point
_2p2

V=[ _) bwhere ¢)_21 b_22

x j;

Gp_+2pz=0or

GP2- ;t P2 =0
for which the maximum eigenvalue

(39)

2Gma× characterizes the maximum possible mean squared and bias error

associated with the assumed true model that includes shape functions missing in the fitting model. The

corresponding eigenvector defines the coefficients of the missing shape functions that results in the largest bias error
when fitted only with the assumed model. The eigenvectors and the function experiencing the worst possible bias
error may be different point-to-point although the magnitude of the missing coefficient vector is constrained. So the

eigenvalue calculated does not reflect the true function corresponding to the data (as the data is insufficient to

calculate _z ). It reflects instead, the assumed form of true function with the shape function coefficients _z (among

all the possible combinations such that [_[_2 = c ) causing the largest error.

As can be seen from the derivation the eigenvalue error measure strongly depends on the DOE used, but not on

the response data. This independence from the response data may be misleading especially for the cases where
fitting model predicts the true function very well at the data points. The following 2D cubic polynomial example
demonstrates such a case.

y = l+x 3 +x 3 (40)

Face-centered central composite design (FCCD) in 2D was used for constructing a quadratic RS. Figure 1

presents the FCCD points and relevant _ field. The maximum values are at the data points on the boundary, but

Table A1 indicates a perfect with the nine data points. The testing rms-error (using 21 by 21 grid points except the
nine data points) and the maximum error, however, shows that the fit is actually quite poor. Figure A1 presents the

true function and the error field. Comparing Figure Alb and Figure lb indicates that eigenvalue error measure did

not predict the high-error regions in this particular example, unlike for the examples studied and reported in [9]. It is
expected that the benefit of the error measure will be increased further if the response data can also be used in the
derivation.
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Table AI" Statistics of the quadratic RS for cubic polynomial given in Eq. (40). RS is given is _ -- 1+ x I + x 2

RSquare ! .000
1.000RSquare Adj

rms-error Predictor 0,000

Mean 1.000

Observations, N ,, 9

0.385Testin_ rms-error (21 x 21 _rid)
Max. Error 0.768

3._100 05

2.067
2.333

0.252.000
1.667
1.333
1.ooo _"
0.687

0.333
0,000

_333
_.667
-I._ -0.5

-0.75

"-1 -0.5 0 0,5

0 05 1 X1

X z

(a) True function (b) Absolute error of RS 1
Figure AI: Contours and RS errors for cubic problem in Eq. (40)
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